ELEMENTS OF BASIC ALGEBRA A + ELEMENTS OF BASIC ALGEBRA B ALGEBRA I

	Algebra A			Algebra B		
	Student Text	Practice Book	Teacher Resource Edition Activities \& Projects	Student Text	Practice Book	Teacher Resource Edition Activities \& Projects
1. Explain how the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for an additional notation for radicals using rational exponents.					27	
2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.	$\begin{aligned} & 2,24,25,26,27,31,32,33, \\ & 34,35,36,37,156,157,158, \\ & 159,160 \end{aligned}$	$\begin{aligned} & 21,22,23,24,25,26,27,34, \\ & 35,36,37,38,39 \end{aligned}$	Ch5, Ch6, Ch7, Ch8, Ch32	40, 41, 42, 61, 62, 118, 119		Ch13
3. Define the imaginary number i such that $\mathrm{i} 2=-1$.						
Algebra and Functions						
Focus 1: Algebra						
4. Interpret linear, quadratic, and exponential expressions in terms of a context by viewing one or more of their parts as a single entity. Example: Interpret the accrued amount of investment $\mathrm{P}(1+\mathrm{r}) \mathrm{t}$, where P is the principal and r is the interest rate, as the product of P and a factor depending on time t .	$3,4,12,17,18,19,28,29$, $30,44,45,46,47,48,49,50$, $51,52,53,54,55,56,57,58$, $61,62,101,102,103,104$, $105,116,117,118,119$, $120,121,122,123,124$, $125,126,132,141,156$, $157,158,159,160,172,177$	17, 18, 44, 47, 48, 49, 102	```Ch1, Ch2, Ch4, Ch5, Ch6, Ch7, Ch8, Ch9, Ch10, Ch11, Ch15, Ch17, Ch22, Ch23, Ch24```	$\begin{aligned} & 1,32,63,89,90,91,93,94, \\ & 125,156,157,158,159, \\ & 160,161 \end{aligned}$	$\begin{aligned} & 1,33,34,40,41,51,54,55, \\ & 60,61,62,64,65 \end{aligned}$	Ch1, Ch8, Ch13, Ch31
5. Use the structure of an expression to identify ways to rewrite it. Example: See $\mathrm{x} 4-\mathrm{y} 4$ as (x2)2-(y2)2, thus recognizing it as a difference of squares that can be factored as (x2-y2)(x2 + y2).	$\begin{aligned} & 2,24,25,26,27,31,32,33, \\ & 34,35,36,37,156,157,158, \\ & 159,160 \end{aligned}$	$\begin{aligned} & 21,22,23,24,25,26,27,34, \\ & 35,36,37,38,39 \end{aligned}$	Ch5, Ch6, Ch7, Ch8, Ch32	40, 41, 42, 61, 62, 118, 119		Ch13
6. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	28, 29, 30, 31, 32	34, 35, 36, 37, 38, 39	Ch6, Ch8, Ch9			
a. Factor quadratic expressions with leading coefficients of one, and use the factored form to reveal the zeros of the function it defines.				$\begin{array}{\|l} 80,81,162,163,164,165, \\ 166,182,183,184,185 \end{array}$	80, 81, 158, 159, 160	Ch31, Ch32, Ch33, Ch34
b. Use the vertex form of a quadratic expression to reveal the maximum or minimum value and the axis of symmetry of the function it defines; complete the square to find the vertex form of quadratics with a leading coefficient of one.				$\begin{aligned} & 165,166,167,168,169 \\ & 170,171,172,173 \end{aligned}$	166, 167, 168, 169, 170, 171	Ch31, Ch33

c. Use the properties of exponents to transform expressions for exponential functions. Example: Identify percent rate of change in functions such as $\mathrm{y}=(1.02) \mathrm{t}, \mathrm{y}=(0.97) \mathrm{t}, \mathrm{y}=(1.01) 12 \mathrm{t}, \mathrm{y}=$ (1.2) $\mathrm{t} / 10$, and classify them as representing exponential growth or decay.	101, 102, 103, 104, 105	102, 103, 104, 105	Ch21, Ch23, Ch31, Ch32	26, 28, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166	164, 165, 166, 167	
7. Add, subtract, and multiply polynomials, showing that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication. Finding solutions to an equation, inequality, or system of equations or inequalities requires the checking of candidate solutions, whether generated analytically or graphically, to ensure that solutions are found and that those found are not extraneous.	$38,39,40,41,42,43,53,55$, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 6, 67, 68, 69, 70, 71, $72,73,74,75,76,77,78,79$, $80,81,82,83,84,85,, 86$, $87,88,89,90,81,82,83,94$, 95, 96, 97, 98, 99, 100, 106, 107, 108, 109, 110, 111, $112,113,114,115,126$, $127,128,129,130,131$, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, $167,168,169,170,171$, 172, 173, 174, 175, 176, 177, 178, 179, 180	39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, $55,59,60,61,62,63,64,65$, 6, 67, 68, 69, 70, 71, 72, 73, $74,75,76,77,79,81,82$, $83,84,85,86,87,88,89,90$, $81,82,83,94,95,96,97,98$, $99,100,106,107,108,109$, $110,111,112,113,114$, 115, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, $175,176,177,178,179,180$	Ch3, Ch4, Ch8, Ch9, Ch11, Ch12,Ch13, Ch14, Ch15, Ch18, Ch22, Ch23, Ch29, Ch31			
8. Explain why extraneous solutions to an equation involving absolute values may arise and how to check to be sure that a candidate solution satisfies an equation. The structure of an equation or inequality (including, but not limited to, one-variable linear and quadratic equations, inequalities, and systems of linear equations in two variables) can be purposefully analyzed (with and without technology) to determine an efficient strategy to find a solution, if one exists, and then to justify the solution.				$\begin{aligned} & 110,111,112,113,114, \\ & 115,116,117,118,119, \\ & 120,121,122,123,124 \end{aligned}$	25, 26, 27, 33, 38, 39	
9. Select an appropriate method to solve a quadratic equation in one variable.						
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p) 2=q$ that has the same solutions. Explain how the quadratic formula is derived from this form.						
b. Solve quadratic equations by inspection (such as x2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation, and recognize that some solutions may not be real.				181, 182, 183, 184	181, 182, 183, 184	Ch31, Ch32

10. Select an appropriate method to solve a system of two linear equations in two variables.				$100,101,102,103,104$, $105,105,107,110,111$, $112,113,114,115,116$, $117,118,119,120,121$, $122,123,124$	$\begin{aligned} & 74,75,76,77,78,79,80,81, \\ & 82,83,84,85,110,111,112, \\ & 113,114,115 \end{aligned}$	Ch17, Ch18, Ch20
a. Solve a system of two equations in two variables by using linear combinations; contrast situations inwhich use of linear combinations is more efficient with those in which substitution is more efficient.						
b. Contrast solutions to a system of two linear equations in two variables produced by algebraic methods with graphical and tabular methods. Expressions, equations, and inequalities can be used to analyze and make predictions, both within mathematics and as mathematics is applied in different contexts - in particular, contexts that arise in relation to linear, quadratic, and exponential situations.				$100,101,102,103,104$, $105,105,107,110,111$, $112,113,114,115,116$, $117,118,119,120,121$, $122,123,124$	$\begin{aligned} & 74,75,76,77,78,79,80,81, \\ & 82,83,84,85,110,111,112, \\ & 113,114,115 \end{aligned}$	Ch17, Ch18, Ch20
11. Create equations and inequalities in one variable and use them to solve problems in context, either exactly or approximately. Extend from contexts arising from linear functions to those involving quadratic, exponential, and absolute value functions.	$54,55,56,57,58,59,60,61$, 62, 63, 64, 65, 66, 67, 68, 69, $70,71,75,73,74,75,76,77$, $78,79,80,81,82,83,84,85$, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, $113,114,115,161,162$, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180	$46,47,48,49,51,52,53,54$, $55,56,57,58,59,60,61,65$, $66,67,68,69,70,71,72,73$, $74,75,76,77,78,79,80,86$, 87, 88, 89, 90, 91, 92, 93, 94, $95,96,97,98,99$	$\begin{aligned} & \text { Ch 12, Ch 13, Ch23, Ch28, } \\ & \text { Ch32 } \end{aligned}$			
12. Create equations in two or more variables to represent relationships between quantities in context; graph equations on coordinate axes with labels and scales and use them to make predictions. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions.				$38,44,45,46,47,48,49,50$, $51,52,53,54,55,56,57,58$, $59,60,61,62,64,65,66,67$, 68, 69, 70, 71, 72, 73, 74, 75, $76,77,78,82,83,84,85,86$, 87, 88, 89, 90, 91, 93		Ch16, Ch17, Ch18, Ch20
13. Represent constraints by equations and/or inequalities, and solve systems of equations and/or inequalities, interpreting solutions as viable or nonviable options in a modeling context. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions.						
Focus 2: Connecting Algebra to Functions						

a. Write explicit and recursive formulas for arithmetic and geometric sequences and connect them to linear and exponential functions. Example: A sequence with constant growth will be a linear function, while a sequence with proportional growth will be an exponential function.				27, 28, 30	27, 29	Ch6, Ch7
23. Identify the effect on the graph of replacing $f(x)$				27, 28, 29, 30, 31	27, 28, 29, 31, 32	Ch6, Ch7
by $f(x)+k, k \cdot f(x), f(k \cdot x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and explain the effects on the graph, using technology as appropriate. Limit to linear, quadratic, exponential, absolute value, and linear piecewise functions.						Ch6,
24. Distinguish between situations that can be modeled with linear functions and those that can be modeled with exponential functions.	54, 55, 56, 57, 58, 59, 60, 61, $62,63,64,65,66,67,68,69$, $70,71,75,73,74,75,76,77$, $78,79,80,81,82,83,84,85$, $86,87,88,89,90,91,92,93$, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, $113,114,115,161,162$, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180	46, 47, 48, 49, 51, 52, 53, $54,55,56,57,58,59,60,61$, $65,66,67,68,69,70,71,72$, $73,74,75,76,77,78,79,80$, $86,87,88,89,90,91,92,93$, $94,95,96,97,98,99$	$\begin{aligned} & \text { Ch12, Ch13, Ch23, Ch28, } \\ & \text { Ch32 } \end{aligned}$			
a. Show that linear functions grow by equal differences over equal intervals, while exponential functions grow by equal factors over equal intervals.	$54,55,56,57,58,59,60,61$, $62,63,64,65,66,67,68,69$, $70,71,75,73,74,75,76,77$, $78,79,80,81,82,83,84,85$, $86,87,88,89,90,91,92,93$, $94,95,96,97,98,99,100$, $101,102,103,104,105$, $113,114,115,161,162$, $163,164,165,166,167$, $168,169,170,171,172$, $173,174,175,176,177$, $178,179,180$	46, 47, 48, 49, 51, 52, 53, $54,55,56,57,58,59,60,61$, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 86, 87, 88, 89, 90, 91, 92, 93, $94,95,96,97,98,99$	$\begin{aligned} & \text { Ch12, Ch13, Ch23, Ch28, } \\ & \text { Ch32 } \end{aligned}$			

b. Define linear functions to represent situations in which one quantity changes at a constant rate per unit interval relative to another.	54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, $70,71,75,73,74,75,76,77$, $78,79,80,81,82,83,84,85$, $86,87,88,89,90,91,92,93$, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 113, 114, 115, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180	46, 47, 48, 49, 51, 52, 53, $54,55,56,57,58,59,60,61$, $65,66,67,68,69,70,71,72$, $73,74,75,76,77,78,79,80$, 86, 87, 88, 89, 90, 91, 92, 93, $94,95,96,97,98,99$	$\begin{aligned} & \text { Ch12, Ch13, Ch23, Ch28, } \\ & \text { Ch32 } \end{aligned}$			
c. Define exponential functions to represent situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	54, 55, 56, 57, 58, 59, 60, 61, $62,63,64,65,66,67,68,69$, $70,71,75,73,74,75,76,77$, $78,79,80,81,82,83,84,85$, $86,87,88,89,90,91,92,93$, $94,95,96,97,98,99,100$, 101, 102, 103, 104, 105, 113, 114, 115, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180	46, 47, 48, 49, 51, 52, 53, $54,55,56,57,58,59,60,61$, $65,66,67,68,69,70,71,72$, $73,74,75,76,77,78,79,80$, $86,87,88,89,90,91,92,93$, $94,95,96,97,98,99$	$\begin{aligned} & \text { Ch12, Ch13, Ch23, Ch28, } \\ & \text { Ch32 } \end{aligned}$			
25. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table).				$\begin{aligned} & 100,101,102,103,104, \\ & 105,106,107,120,121, \\ & 122,123,124 \end{aligned}$	$74,75,76,77,78,79,80,81$, $82,83,84,85,110,111,112$, $113,114,115$	
26. Use graphs and tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.						
27. Interpret the parameters of functions in terms of a context. Extend from linear functions, written in the form $m x+b$, to exponential functions, written in the form $a b x$. Example: If the function $V(t)=19885(0.75) t$ describes the value of a car after it has been owned for t years, 1985 represents the purchase price of the car when t $=0$, and 0.75 represents the annual rate at which its value decreases.				$\begin{aligned} & 18,19,20,21,27,28,38,39, \\ & 40,41,42,47,48,49,50,51, \\ & 52,53,54,55,56,57,58,64, \\ & 65,66,67,68 \end{aligned}$	$10,11,12,13,14,15,16,17$, $18,19,20,21,22,23,25,26$, $27,28,30,38,41,42,43,44$, $45,46,48,49,50,52,53,54$, $56,57,58,63,64,65,66,67$, $68,69,70,71,72,73,74,75$, $76,77,78,79,80,81,82,83$, $84,85,86,87,88$	Ch2, Ch3, Ch4, Ch10, Ch11, Ch16, Ch17, Ch18, Ch19

28. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and linear piecewise functions.				$\begin{aligned} & 18,19,20,21,27,28,38,39, \\ & 40,41,42,47,48,49,50,51, \\ & 52,53,54,55,56,57,58,64, \\ & 65,66,67,68 \end{aligned}$	$\|$$10,11,12,13,14,15,16,17$, $18,19,20,21,22,23,25,26$, $27,28,30,38,41,42,43,44$, $45,46,48,49,50,52,53,54$, $56,57,58,63,64,65,66,67$, $68,69,70,71,72,73,74,75$, $76,77,78,79,80,81,82,83$, $84,85,86,87,88$	Ch2, Ch3, Ch4, Ch10, Ch11, Ch16, Ch17, Ch18, Ch19
29. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Limit to linear, quadratic, exponential, and absolute value functions.				$\begin{aligned} & 27,28,58,64,65,66,67,68, \\ & 69,70,71,84,85 \end{aligned}$	27, 28, 29	Ch9, Ch10, Ch11, Ch12
30. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.						
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.						
b. Graph piecewise-defined functions, including step functions and absolute value functions.						
c. Graph exponential functions, showing intercepts and end behavior.						
31. Use the mathematical modeling cycle to solve real-world problems involving linear, quadratic, exponential, absolute value, and linear piecewise functions.						
Data Analysis, Statistics, and Probability						
Focus 1: Quantitative Literacy						
32. Use mathematical and statistical reasoning with bivariate categorical data in order to draw conclusions and assess risk.						Ch26
33. Design and carry out an investigation to determine whether there appears to be an association between two categorical variables, and write a persuasive argument based on the results of the investigation.						$\begin{aligned} & \text { Ch24, Ch25, Ch26, Ch27, } \\ & \text { Ch28 } \end{aligned}$
Focus 2: Visualizing and Summarizing Data						

34. Distinguish between quantitative and categorical data and between the techniques that may be used for analyzing data of these two types. Example: The color of cars is categorical and so is summarized by frequency and proportion for each color category, while the mileage on each car's odometer is quantitative and can be summarized by the mean.				

