

ELEMENTS OF BASIC ALGEBRA A

Common Core State Standards for Literacy in History/Social Studies, Science, and Technical

Mathematics Standards for High School

The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that
students should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+), as in this example:

Algebra

Seeing Structure in Expressions A-SSE
Interpret the structure of expressions

1. Interpret expressions that represent a quantity in terms
of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients
$3,4,1,12,17, \quad 17,18,44,47$, $18,19,28,29,48,49,102$ 30, 44, 45, 46, 47, 48, 49, 50,
$47,48,49,50$,
$51,52,53,54$,
55, 56, 57, 58,
$61,62,101$.
102, 103, 104,
105, 116, 117,
$118,119,120$,
121, 122, 123,
124, 125, 126,
132, 141, 156,
157, 158, 159,
160, 172, 177,

Ch 1, Ch 1, 32, 63, 89, 1,33, 34, 40 , Ch1,Ch8,Ch
2,Ch 4, 90, 91, 93, 94, 41, 51, 54, 55, 13, Ch3
Ch5, Ch 6, 125, 156, 157, 60, 61, 62, 64
Ch7, Ch 8, 158, 159, 160, 65,
Ch 9, Ch 161 ,
10, Ch 11,
Ch 15, Ch
17, Ch 22,
Ch 23, Ch
24,
24,

Ch 1, Ch
2, Ch 18 ,
Ch 19, Ch
Ch
22,

b. Interpret complicated expressions by viewing one or more of their parts as a single entity.	$\begin{aligned} & 21,22,172, \\ & 173,174,175, \end{aligned}$	$\begin{aligned} & 21,22,23,24,25,2 \\ & 6,27, \end{aligned}$	Ch 5, Ch 9, Ch 17,	25, 26, 27, 30, 31, 3, 34, 35, 36, 37, 38, 39, 40, 41, 42, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 92, 100, 11, 102, 13, 104, 105, 106, 107, 110, 111, 114, $115,116,120$, 121, 122, 123, 124,	$\begin{aligned} & 62,117,118, \\ & 119, \end{aligned}$	Ch31
2. Use the structure of an expression to identify ways to rewrite it.	$\begin{aligned} & 2,24,25,26, \\ & 27,31,32,33, \\ & 34,35,36,37, \\ & 156,157,158, \\ & 159,160, \end{aligned}$	$\begin{aligned} & 21,22,23,24,25,2 \\ & 6,27,34,35,36,37, \\ & 38,39 \end{aligned}$	Ch5, Ch 6, Ch 7, Ch 8, Ch 32,	$\begin{aligned} & 40,41,42,61, \\ & 62,118,119, \end{aligned}$		Ch13
Write expressions in equivalent forms to solve problems 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	$\begin{aligned} & 28,29,30,31, \\ & 32, \end{aligned}$	$\begin{aligned} & 34,35,36,37,38,3 \\ & 9, \end{aligned}$	Ch 6, Ch 8, Ch 9 ,			
a. Factor a quadratic expression to reveal the zeros of the function it defines.				$\begin{aligned} & 80,81,162, \\ & 163,164,165, \\ & 166,182,183, \\ & 184,185 \end{aligned}$	$\begin{aligned} & 80,81,158,159, \\ & 160, \end{aligned}$	Ch31,Ch32, Ch33Ch34 Ch33
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.				157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186	$\begin{aligned} & 80,81,158,159, \\ & 160,184, \end{aligned}$	Ch31,Ch32, Ch33Ch34

c. Use the properties of exponents to transform expressions for exponential functions.

101, 102, 103, 102, 103 104, 105

104,105,
h21,Ch23 26, 28, 157,
164,165,166,16
Ch31,Ch3 158, 159, 160,
161, 162, 163, $161,162,163$,
4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.

Arithmetic with Polynomials and Rational

Expressions A-APR

Perform arithmetic operations on polynomials

1. Understand that polynomials form a system analogous $38,39,40,41,39,40,41,42$, $\mathrm{Ch} 3, \mathrm{Ch} 4$, to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract and multiply polynomials

43, 53, 55, 43,44,45,46,47,4
, 57,58, 59, 43,44,45,46,47,4 Ch8,
6, 57, 58, 59, 8,49,50,51,52,53, Ch11
, 61, 62, 63, 54, 55, 59, 60, Ch12,Ch
4, 65, 6, 67, 61, 62, 63, 64, , Ch14,
68, 69, 70, 71, 65, 6, 67, 68, 69, Ch15
$72,73,74,75, \quad 70,71,72,73, \quad$ Ch18
$76,77,78,79, \quad 74,75,76,77, \quad$ Ch22,
80, 81, 82, 83, 79, 81, 82, 83, Ch23
4, 85,, 86, 87, 84, 85, 86, 87, Ch29
88, 89, 90, 81, 88, 89, 90, 81,
$82,83,94,95, \quad 82,83,94,95$
$96,97,98,99,96,97,98,99$
00, 106, 107, 100, 106, 107
08, 109, 110, 108, 109, 110
$111,112,113, \quad 111,112,113$
$14,115,126, \quad 114,115,130$
$27,128,129, \quad 131,132,134$
130, 131, 132, 135, 136, 137
33, 134, 135, 138, 139, 140
36, 137, 138, 141, 142, 142
39, 140, 141, 144, 145, 146
42, 142, 144, 147, 148, 149
$45,146,147, \quad 150,151,152$
48, 149, 150, 153, 154, 155
$51,152,153,156,157,158$
$54,155,156,159,160,161$
$57,158,159, \quad 162,163,164$
$160,161,162,165,166,167$
Ch3, Ch6,
Ch9,
Ch15
Ch16
Ch20
Ch29
h30
h31

Understand the relationship between zeros and

 factors of polvnomials2. Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $\mathrm{p}(\mathrm{x})$.
3. Identify zeros of polynomials when suitable
factorizations are available, and use the zeros to
construct a rough graph of the function defined by the polvnomial

Use polynomial identities to solve problems

4. Prove polynomial indentities and use them to describe numerical relationships
5. (+) Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in
powers of x and y for a positive integer n, where x and y are any numbers,
with coefficients determined for example by Pascal's
Trianale.

Rewrite rational expressions

6. Rewrite rational expressions in different forms; writ
$(a(x)) /(b(x))$ in the form of $q(x)+(r(x)) /(b(x))$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system
7. (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

Creation Equations * A-CED
 Create equations that describe numbers o
 relationships

$79,80,81, \quad 78,79,80,81$

82, 83,

79, 80, 81, $\quad 78,79,80,81$, 82, 83, 84, 85

1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

54, 55, 56, 57, 46,47,48,49,51 Ch 12, $58,59,60,61, \quad 52,53,54,55,56,5$ Ch 13, 62, 63, 64, 65, 7,58,59,60,61, Ch23 $62,64,65, \quad 7,58,59,60,61$, 66, 67, 68, 69, 65,66,67,68,69, Ch28 0, 71, 75, 73, 70,71,72,73,74,
$4,75,76,77,75,76,77,78,79$
8, 79, 80, 81, 80,86,87,88,89,
22, 83, 84, 85, 90,91,92,93,94,
$36,87,88,89, \quad 95,96,97,98,99$
90, 91, 92, 93,
94, 95, 96, 97,
98, 99, 100,
01, 102, 103
104, 105, 113,
$14,115,161$,
14, 115, 161,
162, 163, 164,
165, 166, 167,
168, 169, 170,
171, 172, 173,
$174,175,176$,
177, 178, 19
180

Ch15
Ch21 Ch23 Ch25 Ch28 Ch35,
$38,44,45,46$,
47, 48, 49, 50,
$51,52,53,54$,
55, 56, 57, 58,
59, 60, 61, 62 ,
64, 65, 66, 67,
68, 69, 70, 71,
$72,73,74,75$,
76, 77, 78, 82,
83, 84, 85, 86,
87, 88, 85, 86,
91, 93,
3. Represent constraints by equations or inequalities, and
by systems of equations and/or inequalities, and interpre solutions as viable or nonviable options in a modeling
context.
4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Reasoning with Equations and Inequalities

A-REI
Understand solving equations as a process of reasonina and explain the reasonina

1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the argument to justify a solution method

21, 22, 23, 2
25, 26, 27, 31,
$32,33,34,35$,
36, 37, 38, 39,
0, 41, 42, 43,
51, 52, 53, 54,
55, 56, 57, 58,
59, 60, 61, 62 ,
53, 60, 61, 62,
$63,64,65,66$,
67, 68, 69, 70,
$71,72,73,74$,
$75,76,77,78$,
$75,76,77,78$,
79, 80, 81, 82,
$83,84,85,86$,
87, 88, 89
9091, 92, 93 ,
94, 95, 96, 97,
98, 99, 100,
106, 107, 108,
109, 110, 111,
109, 110, 111,
12, 113, 114,
$15,126,127$,
28, 129, 130,
31, 132, 133,
34, 135, 136,
137, 138, 139,
140, 141, 142
,143, 144, 145,
146, 147, 148,
2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Solve equations and inequalities in one variable
3. Solve linear equations and inequalities in one varaible including equations with coefficients represented by letters.

55 51, 52, 53, 54 55, 56, 57, 58 59, 60, 61,

Ch4, Ch 95, 96, 97, 98, 110, 111, 112, Ch8,
Ch8, Ch9,
Ch11,
Ch13,
Ch15,
Ch17
Ch22,
Ch23,
Ch28
Ch28 Ch34

99, 100, 101 113,
102, 103, 104,
105, 106, 107, 08, 109,
4. Solve quadratic equations in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the auadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for x^{2} $=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the intial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm$ $b i$ for real numbers a and b.

Solve systems of equations

5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions
6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables
7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.
.(t) Represent a system of lineations as a single matrix equation in a vector variable.
8. (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).

81, 182, 183, 181
184,

182,183,184

100, 101, 102, 74,75,76,77,78, Ch17,Ch18
103, 104, 105, 79,80,81,82,83, Ch20
$105,107,110, \quad 84,85,110,11,11$
$11,112,113, \quad 2,113,114,115$,
114, 115, 116,
117, 118, 119,
120, 121, 122,
123, 124,

100, 101, 102, $\quad 74,75,76,77,78$
103, 104, 105, 79,80,81,82,83
06, 107, 120, $\quad 84,85,110,11,11$
121, 122, 123, 2,113,114,115,
124,

00, 101, 102, 74,75,76,77,78, Ch33
103, 104, 105, 79,80,81,82,83,
106, 107, 84,85,110,11,1 2,113,114,115,

Ch33

Represent and solve equations and inequalities

 araphicallv10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
$44,45,46,47, \quad 44,45,47,48$,
$48,49,50,51, \quad 49,50,52,53$,
$52,53,54,55, \quad 54,56,57,58$
56, 57, 58, 59, 59, 64, 65, 66
$56,57,58,59, \quad 59,64,65,66$,
60, 61, 62, 64, 67, 68, 69, 70,
$65,66,67,68, \quad 71,72,73,74$,
$69,70,71,72, \quad 75,76,77,78$,
$73,74,75,76, \quad 79,80,81,82$,
$77,78,79,80, \quad 83,84,85,86$,
81, 82, 83, 84, 87, 88, 100,
85, 86, 87, 88, 101, 102, 103,
100, 101, 102, 104, 15, 106,
103, 104, 15, 107,
106, 107,

110, 111, 112, 25,
$113,114,115, \quad 26,27,33,38,39$
116, 117, 118,
119, 120, 121,
122, 123, 124,

20, 121, 122, 121,122,123,12 Ch16.Ch17
 123, 124, $4,125 \quad$ Ch20,Ch2

27,28,29,30,31 27,28,29,31,32, Ch6,Ch7

27,28,29,30,31 27,28,29,31,32 Ch6,Ch7
3. Recognize that sequences are functions, sometime defined recursively, whose domain is a subset of the integers.

Interpret fnctions that arise in applications in terms of the context
4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *
5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a araph. *

Analyze functions using different representations

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technoloav for more complicated cases. *
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph square root, cube root, and piecewisedefined functions, including step functions and absolute value functions.
c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
9. Prove the Pythagorean identify $\llbracket \sin \rrbracket^{\wedge} 2(\theta)+\llbracket \cos \rrbracket$ $\wedge 2(\theta)=1$ and use it to calculate trigonometric ratios.

8,19,20,21,27, 10 to
Ch2,Ch3,
28,38,39,40,41, 23,25,26,27,28, Ch4,Ch10
42,47,48,49,50, 30,38,41 to
$51,52,5354,55, \quad 46,48,49,50,52$, Ch17,Ch18
$\begin{array}{ll}56,57,58,64 \text { to } & 53,54,56, \\ 68, & 63 \text { to } 88,\end{array}$

27,28
$27,28,30$
Ch9,Ch14

27,28,58,64,65, 27,28,29 66,67,68,69,70,
71,84,85
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
b. Use the properties of exponents to interpret expressions for exponential functions.
9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

